A semi-analytical formula for the light variations due to low-frequency g modes in rotating stars
نویسنده
چکیده
Through the adoption of the so-called ‘traditional approximation’, a new semi-analytical formula is derived for the light variations produced by low-frequency g modes in uniformly rotating stars. The formula is used to examine the influence of rotation on the variability produced by a stellar model representative of the slowly pulsating B-type class. It is found that, for all apart from prograde sectoral modes, the Coriolis force acts to trap pulsation within an equatorial waveguide. Towards rapid rotation and/or low pulsation frequency, this waveguide becomes so narrow that only a thin band around the stellar equator makes any appreciable contribution toward flux changes. As a result, unless viewed from near the poles, the variability exhibited by the star becomes very small, possibly explaining why recent photometric observations of rapidly rotating stars have failed to find much evidence for the presence of low-frequency modes. It is further demonstrated that the ratio between the variability amplitude in pairs of passbands depends, with the introduction of rotation, both on the azimuthal order of a mode, and on the location of the observer in relation to the rotation axis of the star. This means that the standard photometric techniques used to identify modes in non-rotating stars cannot easily be applied to systems where rotation is significant.
منابع مشابه
Surface trapping and leakage of low-frequency g-modes in rotating early-type stars – I. Qualitative analysis
A qualitative study of the surface trapping of low-frequency non-radial g-modes in rotating early-type stars is undertaken within the Cowling, adiabatic and traditional approximations. A dispersion relation describing the local character of waves in a rotating star is derived; this dispersion relation is then used to construct propagation diagrams for a 7M⊙ stellar model, which show the locatio...
متن کاملSurface trapping and leakage of low-frequency g modes in rotating early-type stars ± II. Global analysis
AB S TRACT A global analysis of the surface trapping of low-frequency non-radial g modes in rotating early-type stars is undertaken within the Cowling, adiabatic and traditional approximations. The dimensionless pulsation equations governing these modes are reviewed, and the boundary conditions necessary for solution of the equations are considered; in particular, an outer mechanical boundary c...
متن کاملAsymptotic expressions for the angular dependence of low-frequency pulsation modes in rotating stars
Through the solution of Laplace’s tidal equations, approximated to describe equatorially trapped wave propagation, analytical expressions are obtained for the angular dependence of pulsation modes in uniformly rotating stars. As the ratio between rotation and pulsation frequencies becomes large, these expressions approach the exact solutions of the governing low-frequency pulsation equations. F...
متن کاملThe Properties of G-modes in Layered Semi-Convection
We study low frequency waves that propagate in a region of layered semi-convection. Layered semi-convection is predicted to be present in stellar and planetary interiors and can significantly modify the rate of thermal and compositional mixing. We derive a series of analytical dispersion relations for plane-parallel layered semi-convection in the Boussinesq approximation using a matrix transfer...
متن کاملنوسانات آزاد زمین
This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003